Standards for Mathematical Practices – Grade 5

The Common Core State Standards for Mathematical Practice are expected to be integrated into every mathematics lesson for all students Grades K-12. Below are a few examples of how these Practices may be integrated into tasks that students complete.

Mathematical Practice	Explanations and Examples
1. Make sense of	Mathematically proficient students in grade 5 should solve problems
problems	by applying their understanding of operations with whole numbers.
and persevere in	decimals, and fractions including mixed numbers. They solve
solvina	problems related to volume and measurement conversions. Students
them.	seek the meaning of a problem and look for efficient ways to
	represent and solve it. They may check their thinking by asking
	themselves "What is the most efficient way to solve the problem?"
	"Does this make sense?" and "Can I solve the problem in a different
	way?"
2 Reason abstractly	Mathematically proficient students in grade 5 should recognize that a
and	number represents a specific quantity. They connect quantities to
quantitatively	written symbols and create a logical representation of the problem at
quantitativery.	hand considering both the appropriate units involved and the
	meaning of quantities. They extend this understanding from whole
	numbers to their work with fractions and decimals. Students write
	simple expressions that record calculations with numbers and
	represent or round numbers using place value concents
3 Construct viable	In fifth grade mathematical profigient students may construct
arguments and	arguments using concrete referents, such as objects, nictures, and
critique the	drawings. They explain calculations based upon models and
reasoning of others	properties of operations and rules that generate patterns. They
reasoning of others.	demonstrate and explain the relationship between volume and
	multiplication. They refine their methometical communication shills
	multiplication. They refine their mathematical communication skills
	as they participate in mathematical discussions involving questions
	like "How did you get that?" and "Why is that true?" I ney explain
	their thinking to others and respond to others' thinking.
4. Model with	Mathematically proficient students in grade 5 experiment with
mathematics.	representing problem situations in multiple ways including numbers,
	words (mathematical language), drawing pictures, using objects,
	making a chart, list, or graph, creating equations, etc. Students need
	opportunities to connect the different representations and explain the
	connections. They should be able to use all of these representations
	as needed. Fifth graders should evaluate their results in the context of
	the situation and whether the results make sense. They also evaluate
	the utility of models to determine which models are most useful and
	efficient to solve problems.
5. Use appropriate	Mathematically proficient fifth graders consider the available tools
tools	(including estimation) when solving a mathematical problem and
strategically.	decide when certain tools might be helpful. For instance, they may
	use unit cubes to fill a rectangular prism and then use a ruler to
	measure the dimensions. They use graph paper to accurately create
	graphs and solve problems or make predictions from real world data.
6. Attend to	Mathematically proficient students in grade 5 continue to refine their
precision.	mathematical communication skills by using clear and precise
	language in their discussions with others and in their own reasoning.

	Students use appropriate terminology when referring to expressions, fractions, geometric figures, and coordinate grids. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, when figuring out the volume of a rectangular prism they record their answers in cubic units
7. Look for and make	In fifth grade mathematically proficient students look closely to
use of	discover a pattern or structure. For instance, students use properties
structure.	of operations as strategies to add, subtract, multiply and divide with
	whole numbers, fractions, and decimals. They examine numerical
	patterns and relate them to a rule or a graphical representation.
8. Look for and	Mathematically proficient fifth graders use repeated reasoning to
express	understand algorithms and make generalizations about patterns.
regularity in repeated	Students connect place value and their prior work with operations to
reasoning.	understand algorithms to fluently multiply multi-digit numbers and
	perform all operations with decimals to hundredths. Students explore
	operations with fractions with visual models and begin to formulate
	generalizations.

Grade 5 Critical Areas

The Critical Areas are designed to bring focus to the standards at each grade by describing the big ideas that educators can use to build their curriculum and to guide instruction.

The Critical Areas for fifth grade can be found on page 33 in the *Common Core State Standards for Mathematics*.

1. Developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions).

Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.)

2. Extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations.

Students develop understanding of why division procedures work based on the meaning of baseten numerals and properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately.

3. Developing understanding of volume.

Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real world and mathematical problems.

Ор	erations and Algebraic Thinking		
• Write and interpret numerical expressions.	Write and interpret numerical expressions.		
Use parentheses, brackets, or braces in numeric	al expressions, and evaluate expressions with the	se symbols	
Student Friendly/"I Can" statements	Resources	ļ	
1. Know the order of operations.	http://nlvm.usu.edu		
2. Use parentheses, brackets, and/or braces			
in numerical expression and evaluate			
them to find the solution.			
Write simple expressions that record calculation	s with numbers, and interpret numerical express	ions without evalua	
express the calculation "add 8 and 7, then multi	oly by 2" as 2 × (8 + 7). Recognize that 3 × (18932	+ 921) is three tim	
without having to calculate the indicated sum of	r product.		
Student Friendly/"I Can" statements	Resources	ļ	
1. Write simple word expressions from			
numerical expressions.			
2. Write numerical expressions from word			
expressions.			
3. Interpret the relationship of the numbers			
in the expressions.			

• Analyze patterns and relationships.

Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding term consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For exa 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting start terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

	Student Friendly/"I Can" statements	Resources	/
1.	Define coordinate plane, coordinates,		
	axes, ordered pairs, corresponding terms.	http://nlvm.usu.edu	
2.	Graph coordinate-pairs on a coordinate	coordinate planes	
	plane.	graph paper	
3.	Given two rules, create a chart with both		
	patterns on the chart.		
4.	Identify the relationship between the		
	corresponding terms in the chart.		
5.	Graph the ordered pairs from the chart on		
	a coordinate plane.		
6.	Determine the relationship of the		
	corresponding terms from a coordinate		
	graph.		
7.	Identify how the relationship would		
	continue.		

Number and Operations in Base Ten

• Understand the place value system.

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place it represents in the place to its left.

	Student Friendly/"I Can" statements	Resources	
1.	Use place value to multiply decimals by	http://nlvm.usu.edu	
	powers of ten to convert them to whole	place value charts	
	numbers.		
2.	Understand that multiplying by 1/10 is the		
	same as dividing by 10.		

Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patternal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote power of 10.

			•
	Student Friendly/"I Can" statements	Resources	4
1.	Define exponents.	Place value charts	
2.	Explain that the number of zeros in a	Graph paper	
	product represents the exponent of 10.		
3.	Explain that since a positive exponent		
	denotes multiplication of 10, a negative		
	exponent denotes division of 10.		
4.	Use whole-number exponents to denote		
	powers of ten.		
Re	ad, write, and compare decimals to thousand	ths.	

a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.3 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$.

-			
	Student Friendly/"I Can" statements	Resources	
1.	Read and write (words and numerical)	Place value charts	
	decimals to the thousandths.	Mathplayground.com – Decention – Decimals,	
2.	Read and write the expanded form of	percents, fractions	
	decimals with fractional notation.	Base 10 blocks	
		Fraction bars	
		Decimal bars	
		NLVM	
		Mathisfun.com/definitions	

b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to comparisons.

	Student Friendly/"I Can" statements	Resources	ļ
1.	Compare two decimals to the thousandths	Place value charts	
	using <, >, and = for recording.		
Use	e place value understanding to round decima	ls to any place.	
	Student Friendly/"I Can" statements	Resources	ļ
1.	Round decimals to any place.	Place value charts	

• Perform operations with multi-digit whole numbers and with decimals to hundredths.

Fluently multiply multi-digit whole numbers using the standard algorithm.

	Student Friendly/"I Can" statements	Resources	ļ
1.	Multiply multi-digit whole numbers using	http://nlvm.usu.edu	
	the standard algorithm.	graph paper for arrays	
		youtube.com/watch	

Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategic properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculated rectangular arrays, and/or area models.

	Student Friendly/"I Can" statements	Resources	/
1.	Divide four-digit dividends and two-digit divisors.	Graph paper	
2.	Explain quotient by using equations, rectangular arrays, and/or area models.		

Number and Operations—Fractions

• Use equivalent fractions as a strategy to add and subtract fractions.

Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with eq way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/1 general, a/b + c/d = (ad + bc)/bd.)

	Student Friendly/"I Can" statements	Resources	
1	Rename fractions as equivalent fractions	http://plym.usu.edu	
1. 2	Rename fractions as equivalent fractions.	<u>Intep.//Invin.usu.edu</u>	
Ζ.	Rename two fractions with unlike	Use arrays to snow simple unlike denominator	
	denominators as equivalent fractions with	fractions and how additional divisions of the	
	the same denominators.	arrays are necessary to get common	
3.	Recognize that the product of two unlike	denominators in order to add or subtract.	
	denominators will create a common		
	denominator.	Show that it might take multiple divisions to	
4.	Recognize that the common denominator	get the common denominator.	
	created by the product of the two unlike		
	denominators may not be the smallest	Once students have an understanding of the	
	, denominator.	arrays, write the numeric equivalent to the	
5.	Add two fractions with unlike	steps taken in explaining the arrays.	
	denominators after renaming the		
	fractions to equivalent fractions with like		
	denominators		
6	Subtract two fractions with unlike		
υ.			
	denominators after renaming the		
	fractions to equivalent fractions with like		
	denominators.		

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of a using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of f mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by ob-

	Student Friendly/"I Can" statements	Resources	
1.	Solve real world addition and subtraction	Plain paper	
	fraction problems.	Graph paper	
2.	Use benchmark fractions to mentally	Fraction bars	
	estimate the solutions.		
3.	Assess reasonableness of answers.		
4.	Recognize mistakes.		

• Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Interpret a fraction as division of the numerator by the denominator $(a/b = a \div b)$. Solve word problems involving division of a subscription of fractions or mixed numbers, e.g., by using visual fraction models or equations to recearangle, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 who among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weil rice should each person get? Between what two whole numbers does your answer lie?

	Student Friendly/"I Can" statements	Resources	ŀ
1.	Interpret fractions as division problems.	http://nlvm.usu.edu	
2.	Solve word problems involving division of	plain paper	
	whole numbers in which the solution is a	graph paper	
	fraction or mixed number.		
3.	Use models to explain result.		

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

a. Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a seque For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation. Do the 8/15. (In general, $(a/b) \times (c/d) = ac/bd$.)

_			
	Student Friendly/"I Can" statements	Resources	ļ
	. Understand that a fraction multiplied by a	Graph paper	
	whole number is the same as the	Fraction tiles	
	numerator of the fraction multiplied by	Plain paper	
	the whole number and the product	Lined paper	
	divided by the denominator.		
	. Create a model showing the product of a		
	fraction and a whole number.		
	. Create a word story for the equation of		
	product of whole number and a fraction.		
4	. Understand that when two fractions are		
	multiplied, the product is the result of the		
	product of the two numerators over the		
	product of the two denominators.		
	. Create a model showing the product of		
	two fractions.		
(. Create a word story for the equation of		
_	the product of two fractions.		
I	. Find the area of a rectangle with fractional sid	de lengths by tiling it with unit squares of the app	opriate unit fractio
1	hat the area is the same as would be found by i	multiplying the side lengths. Multiply fractional signal	de lengths to find a
_	epresent fraction products as rectangular areas	5.	
	Student Friendly/"I Can" statements	Resources	ļ
	. Find the area of fractional side lengths by	Graph paper	

	····· · · · · · · · · · · · · · · · ·		1
1.	Find the area of fractional side lengths by	Graph paper	
	tiling with the appropriate unit size.	Fraction tiles	
2.	Show that the area model is the same as		
	multiplying the fractional side lengths.		
3.	Create fractional rectangular areas to		
	represent fraction products.		

Interpret multiplication as scaling (resizing), by:

a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without perfo multiplication.

	Student Friendly/"I Can" statements	Resources	
1.	Understand that when one factor stays	Graph paper	
	the same and the other is changed by a		
	fractional equivalent of the original the		
	product of the new terms will be equal to		
	the fractional equivalent of the new term		
	when compared to the original product by		
	using visual models.		
2.	Compare products when one factor		
	changes without multiplying.		

b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a faproduct smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the 1.

	Student Friendly/"I Can" statements	Resources	
1.	Explain why a product is greater than 1	Graph paper	
	when a number is multiplied by a fraction	Fraction tiles	
	greater than 1.		
2.	Explain why a product is less than one		
	when a number is multiplying by a		
	fraction less than 1.		

Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction mod represent the problem.

	Student Friendly/"I Can" statements	Resources	
1.	Solve real world problems involving	Graph paper	
	multiplication of fractions using visual models.	Fraction tiles	
2.	Solve real world problems involving		
	multiplication of fractions using		
	equations.		
3.	Solve real world problems involving		
	multiplication of mixed numbers by using		
	visual models.		
4.	Solve real world problems involving		
	multiplication of mixed numbers using		
	equations.		

Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers

a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, creat 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to e because $(1/12) \times 4 = 1/3$.

	Student Friendly/"I Can" statements	Resources	
1.	Use a visual fraction model to find the	Graph paper	
	quotient of a unit fraction (numerator of	Fraction tiles	
	1) divided by a whole number.		
2.	Create a word story for the quotient of a		
	unit fraction divided by a whole number.		

b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story of a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/5) = 4.

	Student Friendly/"I Can" statements	Resources	
1.	Use a visual fraction model to find the	Graph paper	
	quotient of a whole number divided by a	Fraction tiles	
	unit fraction (numerator of 1).		
2.	Create a word story for the quotient of a		
	whole number divided by a unit fraction.		

c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole nu by using visual fraction models and equations to represent the problem. *For example, how much chocolate will each* 1/2 *lb of chocolate equally? How many* 1/3-*cup servings are in* 2 *cups of raisins?*

	Student Friendly/"I Can" statements	Resources	
1.	Solve real world problems involving	Graph paper	
	division of unit fractions by whole	Fraction tiles	
	numbers and division of whole numbers		
	by unit fractions using visual models.		
2.	Solve real world problems involving		
	division of unit fractions by whole		
	numbers and division of whole numbers		
	by unit fractions using equations.		

Measurement and Data

	 Convert like measurement units within a given measurement system. 		
Convert among different-sized standard measurement units within a given measurement system (e.g., conver conversions in solving multi-step, real world problems.			(e.g., convert 5 cm
	 Student Friendly/"I Can" statements Recognize units of measurement within the same system. Divide and multiply to change units. Convert units of measurement within the same system. Solve multi-step, real world problems that involve converting. 	Resources http://nlvm.usu.edu metric and customary ruler meter stick and yard stick measuring cups and pint, quart, gallon containers scales with metric weights and ounces and pounds analog clock with second hand post-it notes Learner.org (Math in Daily Life) Movement of decimals – what do we see in the world?	

• Represent and interpret data.

Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fraction problems involving information presented in line plots. *For example, given different measurements of liquid in idention of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.*

-			
	Student Friendly/"I Can" statements	Resources	ļ
1.	Identify benchmark fractions (1/2, 1/4,		
	1/8)	http://nlvm.usu.edu	
2.	Collect fractional data.	number lines	
3.	Make a line plot to display a data set of	fraction tiles	
	measurements in fractions of a unit (1/2,	graph paper	
	1/4, 1/8).		
4.	Solve problems involving information		
	presented in line plots which use		
	fractions of a unit (1/2, 1/4, 1/8) by		
	adding, subtracting, multiplying, and		
	dividing fractions.		
• 0	Geometric measurement: understand concer	ots of volume and relate volume to multiplication	n and to addition.
Re	cognize volume as an attribute of solid figure	s and understand concepts of volume measureme	ent.
a. /	A cube with side length 1 unit, called a "unit c	cube," is said to have "one cubic unit" of volume,	and can be used to
	Student Friendly/"I Can" statements	Resources	ŀ
1.	Recognize that volume is the	http://nlvm.usu.edu	
	measurement of the space inside a solid	centimeter cubes	
	three-dimensional figure.	cubes of various sizes	
2.	Recognize a unit cube has 1 cubic unit of	Clear three dimensional cube that can be	
	volume and is used to measure volume of	opened to fill with centimeter cubes	
	three-dimensional shapes.		
_b. /	A solid figure which can be packed without ga	aps or overlaps using <i>n</i> unit cubes is said to have a	volume of <i>n</i> cubic
	Student Friendly/"I Can" statements	Resources	/
1.	Recognize any solid figure packed without	http://nlvm.usu.edu	
	gaps or overlaps and filled with (n) "unit	centimeter cubes	
	cubes" indicates the total cubic units or	cubes of various sizes	
	volume.	Clear three dimensional cube that can be	
		opened to fill with centimeter cubes	

 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

 Student Friendly/"I Can" statements
 Resources

 1. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
 http://nlvm.usu.edu

 using cubic cm, cubic in, cubic ft, and improvised units.
 centimeter cubes

 Clear three dimensional cube that can be opened to fill with centimeter cubes

Relate volume to the operations of multiplication and addition and solve real world and mathematical problems invo a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and sh same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the ba whole-number products as volumes, e.g., to represent the associative property of multiplication.

	Student Friendly/"I Can" statements	Resources	ļ
1.	Identify a right rectangular prism.	http://nlvm.usu.edu	
2.	Find the volume of a right rectangular	centimeter cubes	
	prism with whole number side lengths by	right rectangular prisms	
	packing it with unit cubes.	Clear three dimensional prisms that can be	
		opened to fill with centimeter cubes	

opened to fill with centimeter cubesb. Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms wlengths in the context of solving real world and mathematical problems.

	Student Friendly/"I Can" statements	Resources	ŀ
1.	Develop volume formula for a rectangle prism by comparing volume when filled with cubes to volume by multiplying the height by the area of the base, or when multiplying the edge lengths (LxWxH).the three dimensions in any order to calculate volume (Commutative and associative properties).	http://nlvm.usu.edu centimeter cubes right rectangular prisms Clear three dimensional prisms that can be opened to fill with centimeter cubes	
Ζ.	prism by the volume formula.		

c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prof the non-overlapping parts, applying this technique to solve real world problems.

	Student Friendly/"I Can" statements	Resources	ļ
1.	Recognize that volume is additive in that a	http://nlvm.usu.edu	
	complex 3-d figure can be broken down	centimeter cubes	
	into understandable three-dimensional	right rectangular prisms	
	figures.	Clear three dimensional prisms that can be	
2.	Solve real world problems by	opened to fill with centimeter cubes	
	decomposing a solid figure into two non-		
	overlapping right rectangular prisms and		
	adding their volumes.		

Geometry

• Graph points on the coordinate plane to solve real-world and mathematical problems.

Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the line coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called it that the first number indicates how far to travel from the origin in the direction of one axis, and the second number the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond coordinate, *y*-axis and *y*-coordinate).

	· · · · · ·		
	Student Friendly/"I Can" statements	Resources	ļ
1.	Define the coordinate system,	http://nlvm.usu.edu	
	perpendicular, coordinates	coordinate graphs	
2.	Identify the x- and y-axis		
3.	Locate the origin on the coordinate		
	system		
4.	Identify coordinates of a point on a		
	coordinate system		
5.	Recognize and describe the		
	connection between the ordered pair		
	and the x- and y-axis (from the origin)		

Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, a values of points in the context of the situation.

	Student Friendly/"I Can" statements	Resources	ļ
1.	Graph points in the first quadrant	Coordinate planes	
2.	Represent real world and mathematical	Directions for maps	
	problems by graphing points in the first	Climbing rope	
	quadrant	Learners.org	
3.	Interpret coordinate values of points		
	in real world context and		
	mathematical problems		

• Classify two-dimensional figures into categories based on their properties.

Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of the rectangles have four right angles and squares are rectangles, so all squares have four right angles.

	Student Friendly/"I Can" statements	Resources	
1.	Recognize that some two-dimensional	Variety of two dimensional shapes.	
	shapes can be classified into more than		
	one category based on their attributes.		
2.	Describe common attributes.		
3.	Name categories and determine which		
	two-dimensional shapes go into which		
	categories.		
Cl	assify two-dimensional figures in a hierarchy b	based on properties.	
	Student Friendly/"I Can" statements	Resources	
1.	Recognize if a two-dimensional shape is	Variety of two dimensional shapes.	
	classified into a category, that it belongs		
	to all subcategories of that category.		
2.	Classify two-dimensional shape according		
	to categories and subcategories.		